
Problem Solving 

Introduc3on 

An essential part of mathematics is finding patterns, posing questions about those 
patterns, and then solving the problems posed by those questions. As those problems are 
investigated, further interesting questions may naturally arise and lead to beautiful and 
intriguing developments for further investigation. Problem solving is at the heart of doing 
mathematics.

This paper looks at the process of doing problem solving. To distinguish problems from 
exercises, a problem will refer to a task whose method of solution is not readily apparent to 
the solver. Starting around 1980, Alan Schoenfeld created a framework for problem solving 
built on Polya’s groundbreaking 1945 book How to Solve It. In his book Mathema/cal 
Problem Solving, Schoenfeld identifies four areas that make up a framework for problem 
solving: Resources (the collection of known math facts, procedures, skills), Problem-
solving Strategies, Self-monitoring (watching over problem solving steps), and Beliefs 
(beliefs and attitudes about doing mathematics). Roughly speaking, each area of the 
framework attends to how the previous area is managed. This paper is made up of four 
chapters corresponding to Schoenfeld’s four areas.  

In the last few decades, various researchers have described variations on Schoenfeld’s 
work. Notable among these frameworks is Singapore Math, which makes problem solving 
central to its curriculum and whose framework greatly resembles Schoenfeld’s.

The process of solving a mathematical problem can be broken into phases as follows. The 
processes in these phases involve Strategies and Self-monitoring, which are described in 
detail in the appropriate chapters.

Phase 1: Understand the Problem Deeply.  
Start by reading the problem very carefully, paying careful attention to what it is giving you 
and what it is asking for. Make sure that you have the necessary background in all the 
mathematical definitions and concepts involved in the problem – if not, this is the time to fill 
in any holes. Employ some basic strategies to get to know the problem: list out the givens 
and inferred givens, look for similar problems you have seen in the past, and find an 
effective way to represent the information of the problem.

Phase 2: Search for and Pursue Strategies 
For difficult problems, this phase is where almost all your time and effort will be spent. This 
phase involves a cycle, perhaps repeated many times, of

1) Analyze the problem looking for entry points and places where the problem may 
be vulnerable to attack. Use this analysis to identify a problem-solving strategy to 
try.
2) Use the strategy identified in (1) as thoroughly as you can. 



3) Constantly self-monitor to make sure pursuing this strategy continues to make 
sense. When it stops making sense, go on to step (4).
4) When you decide to suspend using the current strategy, you have a choice of 
how to cycle back to the start. You may decide that any one of the following is the 
appropriate next step:

a) You may think you are doing good things and are simply exhausted, in 
which case you will resume where you left off with this strategy when you 
have more energy (and who knows, your subconscious may have come up 
with some good ideas as you rested).
b) You may decide that this strategy is unlikely to be the best use of your 
resources right now (perhaps it is going nowhere or looks overly time 
consuming), in which case you should go back to (1) above and reanalyze 
the problem to find a new strategy to pursue.
c) You may suspect that you have misunderstood or missed something, in 
which case you should return to Phase 1 and possibly reach some new 
understandings.

Phase 3: Review your Solu3on. 
At this point you believe you have a solution to the problem. Check that your solution is 
correct and that your steps and answers make sense. Make sure that your solution is 
presented in a clear manner that includes all the steps. Look to see if your result fits into 
other work you have done or see if it might lead to further interesting results.

Before diving into the rest of the paper, here are two enjoyable quotes about problem 
solving.

(G. Polya) “Teaching to solve problems is education of the will. Solving problems 
which are not too easy, students learn to persevere through unsuccess, to 
appreciate small advances, to wait for the essential idea, to concentrate with all 
their might when it appears. If students have no opportunity in school to familiarize 
themselves with the varying emotions of the struggle for the solution, their 
mathematical education failed in the most vital point.”

(A. Schoenfeld) “Solving problems is the business of mathematicians; it is the 
excitement of mathematics. We owe it to those who will be the mathematicians of 
the future, to those who will use mathematics, and to those who would like a 
“feeling” for mathematics, to introduce them to the problem-solving experience. We 
hope and believe that the problem-solving approach to mathematics, throughout the 
curriculum and through a variety of problem courses, will convey to our students the 
excitement and beauty of mathematics. To the degree that we train our students to 
think independently and to use the knowledge at their disposal, we will have 
succeeded as teachers.” 



Chapter 1 - Resources 

The term Resources will be used to refer to a student’s mathematical knowledge base, an 
inventory of mathematical facts, procedures, and skills. It is a collection of schemas that a 
student has learned to recognize and knows how to use. For example, when an Algebra 
student sees the fraction 10/18, this triggers the recognition that there is a common factor 
of 2 that should be removed to obtain the equivalent fraction 5/9. Students have thousands 
of these schemas that they have been trained to recognize.

While the development of excellent Resources for a student is an important topic, there are 
only a few points I wish to make in this paper about them.

Many students overlook the distinction between being aware of a schema and having the 
ability to use a schema effortlessly. These students believe they have finished their work 
with a schema by knowing that a schema exists, and this belief creates false confidence. A 
schema should be practiced and mastered to the point of effortlessness so that it can be 
used without contributing to cognitive load, that is, so that it does not distract from the truly 
difficult parts of a problem. Everyone’s short-term memory is limited. The more you need to 
use your short-term memory to use a schema that was not fully mastered, the less your 
short-term memory is available to work on the problem at hand. 

Similarly, many students memorize schemas and simply know that they are true. Without a 
deeper understanding of a schema and its use, this knowledge is very brittle. Memorized 
material is not robust - it breaks and becomes useless when simple changes are made to 
a problem’s circumstances. Also, memorization of facts and procedures is not only of 
dubious value, it is boring and uninteresting to do.

Students should continually be working on improving the state of their Resources. When 
going over homework or looking over a returned assessment, make an annotated list of 
schemas that need to be worked on. Perhaps bring this list to your teacher to go over 
together. If solving a quadratic equation using factoring is challenging for you, put it on the 
list. If you know how to solve linear equations, but you need more practice when the 
coefficients are fractions, put that on your list so that you will practice it to the point of 
effortless mastery. If you think the square root of a sum is the sum of the square roots, put 
that misconception on the list. Everyone has schemas that are partially understood, need 
more practice, or are even incorrectly understood - put those schemas on a list with an 
explanation of why they are there, and then systematically improve them!



Chapter 2 - Problem Solving Strategies 

Problem solving strategies are general rules of thumb for solving problems. They are 
guidelines for what to do next when attacking an unfamiliar problem. No one strategy, or 
even all the strategies combined, can guarantee that progress will be made on a problem. 
Problem solving is an art with no automatic methods, and that is part of what makes it so 
much fun. Note that strategies are useless if the problem solver has not mastered the 
appropriate Resources for the problem domain. 

Just as Resources are learned over time, so should Strategies. If a student learns 
Strategies a few at a time starting in elementary school and continuing on into Middle and 
Upper School, by the time college courses are reached, the student will have a wide array 
of problem-solving strategies mastered and available. Schoenfeld points out that a basic 
sounding strategy, such as “look at a simpler version of the problem,” is actually composed 
of dozens of more specific strategies more easily understood by students, such as “when 
looking at a problem involving general triangles, look at what happens for isosceles, right, 
or equilateral triangles.” Note that the distinction between Strategies and Resources can 
be subtle at times. The guideline that Strategies are useful rules of thumb for attacking 
problems will serve to keep us from being too fussy about when some very familiar or 
simple Strategy might be thought of as a Resource.

Singapore Math considers strategies an essential part of their approach to problem 
solving. They have a list of 13 strategies, with the first 11 to be mastered in the primary 
grades. Briefly, their list is: 1) Act out the problem;  2) Use a diagram or model;  3) Use 
guess-and-check;  4) Make a systematic list;  5) Look for patterns;  6) Work backwards;  7) 
Use before-after concept (work forward from givens and backward from goal);  8) Make 
suppositions (add or remove elements to or from the problem);  9) Restate the problem;  
10) Simplify the problem;  11) Solve part of the problem (break it into subproblems);  12) 
Think of a related problem;  13) Use equations.

The strategies described in this chapter are categorized into levels. The first section 
consists of strategies to be employed at the start and end when solving any problem. After 
that section, Basic Strategies covers strategies that are useful up through about Algebra I. 
Intermediate Strategies are fairly general strategies useful in attacking more sophisticated 
problems. Advanced Strategies tend to be of narrower applicability and are often aimed at 
specific types of advanced problems. There is no distinct cutoff between the levels - there 
will be simpler problems that benefit from one of the advanced strategies, and there will be 
complex problems that benefit from the insights of basic strategies. Also note that some 
general strategy descriptions are repeated in the various levels; however, when this 
repetition occurs, the specific strategies associated with that category will be more 
advanced in the more advanced levels.



Strategies for the Start and End of Every Problem 

No matter the level of difficulty of the problem, start every problem by learning deeply 
about it. It is essential to read the problem carefully with attention to detail and to look for 
possible points of confusion. The starting strategies listed in this section are meant to bring 
you to a deeper understanding of your problem. After you finish your solution to the 
problem, reflecting on your work and results is important for finding mistakes, improving 
your problem-solving skills, and discovering interesting new directions to investigate.

Start every problem by getting to know it deeply:
● Read the problem carefully and understand all the details.
● Recognize the nature of the material and make use of similar problems you have 

seen.
● Represent the information in a way that organizes it and makes the problem clearer.

End every problem by reflecting on your solution:
● Check your answer and your solution steps.
● Make sure your solution writeup is clear and easy to read.
● Reflect on the process of solving this problem and the results you obtained.

The following are detailed discussions of each of the strategies listed above.

Have you read the problem carefully and taken note of all the details? Be sure to read it 
several times. In their hurry to solve a problem, students often rush through reading a 
problem and skip over important details. It is surprising how often rereading a problem will 
produce reactions such as “oh, I get it now.” 
Make sure you are being thorough by asking yourself the following questions.

What are you given and what do you know? Identify all facts, figures, and 
information and write them down. Try restating the problem in your own words to 
check your understanding.

Do you know and understand the definition of all the terms, concepts, and 
formulas used in the problem? If not, look them up and understand them 
before tackling the problem.
What do you assume to be true? Are these assumptions valid?
What new information can you infer directly from the givens? These are 
called inferred givens and should be written down along with the givens. For 
example, if you are told that there is a car that has traveled 100 miles in 2 
hours, an inferred given is that the car has traveled at an average speed of 
50 miles per hour.

What are the goals of the problem? What results are asked for in the problem?
Is there more than one question built into the problem? Be sure not to leave 
any out.

Have you seen a problem like this before? Are there problems you have looked at that 
have similar data, results, or unknowns? Does the nature of this problem suggest using 
methods to solve it that are like past problems?

∎ 
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The problems in our problem sets often build on earlier problems (perhaps several pages 
or days away). Taking a moment to recall related earlier problems can make the 
current problem much easier. Looking at how that earlier problem was solved (good 
notes help here) may give you a ready-made method for solving this problem.

Similarly, though less definitely, finding problems you have done with similar setups or 
results gives you problems that are useful in the same way.
Example You are asked to show that the only number that has all 1’s that is a square 

is the number 1. You look at the result and think about what you know about 
numbers that are squares. You recall some earlier problems that numbers that 
are squares must be either of the form 3k or 3k+1, and they must also be of the 
form 4k or 4k+1. The first fact turns out not to be useful, but the second one 
solves the problem!

Example (From PEA Math 1) A ladder is leaning against a wall. Each time I step up 
on a rung I get 6 inches closer to the wall and 8 inches higher off the ground. 
The base of the ladder is 9 feet from the wall. How far up the wall does the 
ladder reach? Seeing this problem reminds you of problems where lines went 
up and over various amounts and other problems involving sides of triangles 
whose sides had fixed ratios. You look at some of the line problems and see the 
idea of using slopes and that helps you solve the problem. Or perhaps you look 
at the triangle problems and get the idea of using similar triangles and you use 
that to solve your problem.

What is the nature of this problem? Does the nature of this problem suggest taking certain 
approaches to solving it?

For example, if a problem looks similar to a quadratic equation, you may be able to 
transform it so that you can use your tools for solving quadratic equations.
Example (Polya) a4 – 5a2 + 4 = 0. This feels like it may be a quadratic equation in 

disguise. By setting x = a2, this equation becomes x2 – 5x + 4 = 0. Now you can 
use your factoring skills for quadratic equations to turn this into (x – 4) (x – 1) = 
0, which gives the solutions x = 1 or 4. Finally, x = a2 produces a = -1, 1, -2, or 
2.

#### Add in the point that it is also important to find similar problems and then note minor 
differences that may be important for translating the earlier solution to this one – this may 
not be needed as it is mostly already here, but think about it.

Choose a representation of the problem that organizes the information or makes the 
problem logic clearer.

Have you tried drawing a picture, creating a diagram, or acting out the problem 
scenario?
Making the problem more concrete through visualization or acting can be a 
tremendous help in understanding the problem. Sometimes making sketches of the 
actions described in the problem and annotating the sketch with problem details can 
help a lot.
Example If 128 tennis players play a single-elimination tournament, playing no more 

than one match per day, how many days would it take and how many individual 
matches would occur? Look at a simpler version of this problem involving 8 
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players. You can act this out using 8 people standing at the front of the room, or 
you can act this out with pencil and paper by making a diagram of possible 
match outcomes.

Example Alice and Bob live 12 miles apart. Alice rides toward Bob at 14 miles an 
hour and Bob walks toward Alice at 4 miles an hour. How long does it take for 
them to meet in the middle? Drawing a picture of this may make it easier to see 
that they have 12 miles to cover at a combined speed of 18 miles an hour, so it 
will take them 2/3 of an hour.

Example How many ways can you stack three books on a table? If you try this with 
three books, you will see there are six ways to do it. If you think about your 
process, you find you had three choices for the bottom book, two choices for 
the second book, and one choice for the top book – this is what gives 3 * 2 * 1 = 
6 ways to do it.

If the problem involves a fair amount of data, putting the data into a graph, table, bar 
chart, pie chart, or some other data representation may make it easier to 
understand the data and see patterns in it. Along similar lines, in the course of 
working on a problem, students will have examples and problem attempts scattered 
all over a page or several pages. Our brain is a fabulous recognizer of patterns, but 
it needs to have a chance to see the information clearly. Taking a minute to organize 
the data you have can make a result obvious or make it clearer what work remains 
to be done.
Drawing a diagram or graph is often a good idea, even when the problem seems 
algebraic in nature. Creating this new representation may give you a much better 
feel for the problem and may suggest new ideas to you. You might even solve the 
problem graphically.
Example You work a problem and produce the points (4, 3.5), (5, 5.5), and (7,9.5). If 

you make a table, you may see that the y-value increases twice as fast as the 
x-value. If you graph the points, it will be obvious that this data is linear with 
slope 2.

Example Tables are often an excellent way to organize information in a rate problem. 
Problem: It takes the first pump 6 hours to fill a tank and it takes the second 
pump 8 hours to fill the same tank. We want to use three pumps that will 
combine to fill the tank in 2 hours. How quickly must the third pump fill a tank? 
Once the table is set up, you see that the rates need to add up to 1/2 and the 
rest of the problem is easy

Pump Time Amount Rate

First 6 
hrs. 1 tank 1/6 tank/hr.

Second 8 
hrs. 1 tank 1/8 tank/hr.

Third x hrs. 1 tank 1/x tank/hr.



Example Singapore Math makes extensive use of horizontal bar models to represent 
problems. The bars are used to illustrate how the parts of an entity can be put 
together to create a whole, or to see which parts are missing from the whole. When 
there are comparisons of several entities, their bar models can be layered to make 
comparing them easy. If you are interested in finding out more about this, please 
search online for the extensive materials available there.
Once a student becomes comfortable with algebraic methods, a standard form of 
representation is to use variables to translate the sentences of a problem into 
equations and inequalities. 
Identify the things you will need to work with and give all, or most, of them names. 
In particular, identify the things you need to solve for and give them names.
Translate the sentences into math – typically this is a collection of equations and 
inequalities.
Example Al’s father is four times as old as Al is. In four years, Al’s father will be three 
times as old as Al will be. How old are they. If you let A and F represent the current 
ages of Al and his father, respectively, the two sentences translate to F = 4A and (F 
+ 4) = 3(A + 4). Substituting F = 4A into the second equation leads to 4A + 4 = 3A + 
12, which is easily solved to discover A = 8 and F = 32.

You are done with the problem, now what? There are important ideas to consider once you 
have finished a problem. These ideas are often ignored due to time pressure or simply the 
feeling that the job is done, and it is time to move on to the next thing. 

Have you checked your answer and your solution steps? While it is always a good idea 
to look back over your steps, if there is a mistake in those steps it is often easy to have the 
same thought processes while reviewing the steps as you did originally and thereby repeat 
the mistake and not catch it. One way to avoid this is to find alternate ways to do things. 
Here are some other ways of finding errors in your work.

a. Are the units or types of things in your answer sensible?
Example If your problem asks for the area of something and your answer is a 

length, then you have a mistake to find.
b. Are the amounts in your answer reasonable?

Example If your problem is calculating how many cars are needed to move 
some children and you end up with 5 2/3 cars, you have an 
unreasonable answer and need to reconsider how to calculate the 
correct answer.

c. Is your answer of reasonable size and quality? Is it absurdly large or small? Is it 
negative or 0 when it should be positive?
d. More generally, does your solution make intuitive sense now that you have 
worked your way to the end of the problem?

All 
Three

2 
hrs. 1 tank 1/2 tank/hr.
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e. Try plugging your answer back into the problem and carry it through the original 
problem steps. Does your answer make all the steps work out correctly?
f. Is the correctness of each of your problem-solving steps clear to you? For any 
steps you are unsure of: can you redo it in a different way, is there an independent 
way to check it, can you identify the place of uncertainty and prove to yourself that it 
works?

Be sure to read through your solution to ensure that it would be easy for another person 
to follow and understand it – your exposition is important! Good ideas presented in an 
uncompelling way are wasted. Make sure that every important step is included and is 
clearly explained. If you find you cannot explain something, that may mean that it is 
incorrect or that you have further work to do.

Reflect on the process of solving this problem and the results you obtained. 
a. If a result is new to you, record it for future use. Think about how this result fits 
into other similar results or results about similar material.
b. If the problem-solving process was new or particularly interesting, make a note of 
it so you will not need to reinvent it the next time you encounter a problem of this 
type.
c. If the problem solution had some unusual or notable applications of problem-
solving strategies or uses of theorems, note those too. 
d. If you made some mistakes, think about recording those and how they occurred. 
Making a systemic list of your mistakes will raise your awareness of the types of 
mistakes you tend to make and make it easier to reduce their frequency.
e. Reflect on how well you did with self-monitoring. Did you spend a large amount of 
time following an idea that was clearly never going to work, was doomed to take a 
huge amount of time, or that even if it was successful was unlikely to get you closer 
to your goal?
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Basic Strategies 

● Look at simpler versions or variations of the problem. Do examples and look for 
patterns.

● Break the problem into pieces easier to tackle independently. 
● Work the problem forward and backward. Create intermediate goals.
● Try guess and check or estimating the answer.
● Work together when it is allowed. Describe to a listener your ideas about the 

problem.
● Use Prealgebra and Algebra I strategies.

The following are detailed discussions of each of the problem strategies listed above.

Have you looked at simpler versions of the problem? Along the same lines, have you 
tried lots of examples and looked for patterns in the way the examples work out? 
Sometimes, just the process of working the examples illuminates what the process of the 
problem is and how to solve it. It is surprising how powerful this simple idea is and how 
often it is neglected. Students are reluctant to start with the easiest examples, thinking 
them too trivial - given how quick and useful the easiest examples often are, they should 
be encouraged to start very simply.

Example If you travel at (x + 3.2) mph and want to travel 63.2 miles, how long will it 
take? A student may be daunted by the complicated expressions and be unsure 
how to proceed. However, if they realize that solving this problem uses the 
same steps as solving the simpler problem of finding the travel time for going 
120 miles traveling at 30 mph, then they will know which steps to follow.

Example What is the highest power of 2 that evenly divides 1000! ? If the student 
has never thought about this, solving this problem can be overwhelming. 
However, if the student looks at solving the same problem for 2!, 3!, 4!, 5!, 6!, 7!, 
and 8!, in a very short time a pattern will emerge that can be used to solve the 
larger problem.

Example What is the ones digit of 71000? When students are asked for simpler 
versions of this problem, they will often start with 75 or even 720. You should 
usually start with the very simplest and smallest example when possible. Doing 
this problem for 71, 72, 73, 74, 75, and 76 will only take a minute or two, and the 
pattern for how to solve the problem will emerge and be available.

Example What is the product of all the divisors of a number? At first, this sounds 
quite complicated. However, if you write out the first examples of this for 
divisors of 4, 5, 6, 7, 8, and 9, you will quickly discover that this has a fairly 
simple formula.

Example In a basic form of Nim, two players start with a number and then they take 
turns subtracting 1 or 2 from the current number. The player who makes the 
current number 0 wins. What is the winning strategy? If the starting number is 
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50, this is an imposing problem. However, by starting with 1 and doing the first 
five or six examples, the pattern emerges, and it becomes an easy problem.

Have you looked for variations of this problem that may be easier to solve? Perhaps there 
are problems analogous to the original problem that you can solve and learn from. 
Similarly, can you think of ways of generalizing or specializing the original problem that 
would be easier to solve or interesting to investigate?

Similar to looking at easier versions of a problem, sometimes you can find a 
variation of the problem that is easier to solve. While solving this problem may not 
give you a method for solving the original problem, its line of reasoning may be 
similar enough that it gives you insights into how to solve your original problem. 
Along similar lines, changing a problem to something more general or specific can 
create a problem that is easier to solve.
Example (Polya) Suppose you are told there are two ships traveling in straight lines 

at constant speeds, and you are asked to calculate their distance apart when 
they are closest. At first, you are stumped and wonder how to solve it. You 
decide to consider a special case where one of the ships has speed 0 and is 
not moving. You have seen this before and know that the shortest distance is 
what the distance will be when the line between the two ships is perpendicular 
to the motion of the moving ship. You then realize that you can make the 
original problem into this more specialized problem by subtracting the motion of 
one of the ships from the motion of both of the ships!

#### When dealing with problems in which an integer parameter n plays a 
prominent role, it may be of use to examine values of n = 1, 2, 3, … in sequence, in 
search of a pattern.
If the problem in its current form is too difficult, relax one of the conditions. Ask for a 
little less than the current problem does, while making sure that the problem you 
consider is of the same nature. Now there should be more than one solution to the 
new problem. Look at the collection of solutions to the easier problem and see if the 
solution to the original is among them.
In general, if a problem is true about a general class of objects, look at what 
happens for the simplest members of that class. For example, if it involves triangles, 
look at isosceles, right, or equilateral triangles. For problems involving an arbitrary 
chord in a circle, look at the special case where the chord is a diameter.
Example There is a theorem that says that the size of an inscribed angle in a circle is 

half the size of the intercepted arc. To start to prove this, prove it first for 
angles that have a diameter as one of their sides. Proving this special case is 
relatively straightforward, and the result of the special case may be used as a 
basis for a general proof.

Have you tried breaking the problem into pieces that are easier to tackle independently?
There are two ways that this can be helpful in problems. One is to establish a string 
of subgoals that when traversed will give the full solution. The other is to break the 
problem into independent cases each of which can be attacked more easily than the 
original problem – that option will be discussed in the Intermediate Strategies 
section. #### maybe include it here?

∎ 



Creating subgoals: In your career as students, you have seen many problems like this 
where the problem writer has broken the solving of a harder problem into multiple 
steps for you, often labeled parts a, b, c, and d. As you become more sophisticated 
as a problem solver, you will be expected to find for yourself the places where those 
intermediate results can be obtained. 
Example Write this ####

The creation of a subgoal often occurs without premeditation. You may find that you have 
successfully made it part of the way to the solution, but now you are temporarily 
stumped. That waypoint becomes a subgoal you have reached – with luck it will be 
part of a successful path to the full solution.

Have you tried working the problem forward and backward? Have you considered 
creating intermediate goals? Be sure to value and write down partial solutions!

#### Clean this up and write more.
While simpler problems can often be solved by going from beginning to end in a 
straight line with relatively little difficulty in between, more complex problems often 
call for more problem-solving flexibility and ingenuity. To find your way to completing 
the solution, you may need to set up intermediate goals to reach. In some 
circumstances, you may find it easier to work backward from goals rather than 
reaching those goals in a forward direction. Sometimes, part of your work will be 
forward and other parts will be backward – this often happens in more difficult 
geometry problems. During all this work, be sure to cherish your partial solutions – 
you may come back to your work after a while and suddenly see how to finish it, or 
you may show it to someone who may have just the idea you were missing.
Example (Polya) You have a 4-pint bucket and a 9-pint bucket. You are challenged to 

return from a lake holding exactly 6 pints of water. How do you do it? After some 
thought, you realize that at the end you must have 6 pints in the 9-pint bucket, 
which means you had to find a way to pour off 3 pints from the full bucket. To 
pour off 3 pints, you had to have 1 pint in the 4-pint bucket. To get 1 pint in the 
4-pint bucket you can fill up the 9-pint bucket and pour 4 pints out of it twice. 
Working backwards from the desired result is far easier than experimenting with 
all the ways to start this problem and finding the one way of succeeding.

Be playful with the problem. Sometimes you should just mess around with a problem, 
enjoy the interplay of the mathematics, and for a moment not concern yourself as much 
with where things are leading. There are several ways to be playful.
One playful approach is to use educated guess and check to find a solution that works. 
Along those lines, try estimating what the solution should look like and see how close you 
can come. Students often feel that guessing is not solving the problem, that it lacks merit. 
This is not the case! Attacking a problem by making educated guesses has several 
benefits. First, it may provide you with the requested answer. Second, the process of 
deciding how to make those guesses combined with the collection of results obtained in 
this way teaches you a great deal about the internal structure of the problem.

Example You have 56 bicycles and tricycles in the shop, and you have a total of 138 
wheels to pump up. How many tricycles do you have? If you guess the number 
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of tricycles and guess 20, 25, and 30, you will end up with 132, 137, and 142 
wheels. You will notice that the number of wheels goes up as the number of 
tricycles increases and quickly get the answer of 26 tricycles. You may also 
notice that the number of wheels increases by one with each additional tricycle 
and arrive at the equation 2*56 + tricycles = 138.

Another way of playing is to come up with several preliminary or partial ideas. Do not worry 
that you do not see how these ideas can be used. Record them so that the ideas are not 
forgotten, and then keep playing around with other new ideas.
Perhaps above all else, remain undaunted and be persistent. Keep playing with ideas for 
this problem and have fun with them. This may be a good moment to look at some of the 
thoughts in the Self-Monitoring chapter.

Work together when it is allowed. Along the same lines, describe to a listener all your 
ideas about your problem.

Doing mathematics need not be a lonely, solitary activity. Sharing ideas and 
problem-solving techniques can be fun and help all involved to grow and become 
better problem solvers by learning from each other. Avoid simply giving or getting 
answers when working with others. Give guiding hints or questions so that the other 
students have the pleasure of solving the puzzle; the questions from this document 
may help a lot with giving each other the appropriate kinds of help!
Telling someone your ideas about a problem would seem to be a waste of time. 
However, you will be surprised how often when you are in the middle of describing 
your ideas you suddenly see your way clear to the end of the problem (be sure to 
thank your listener).

Use Prealgebra and Algebra I strategies. This is a list of strategies to use for early 
Algebra problems.

#### This needs a bunch of work
Combine like terms if it seems to simplify the expression.
Simplify complex fraction expressions. Remove common factors from the numerator 
and denominator. Use a common denominator to combine fractions being added or 
subtracted. Use fraction rules to combine fractions being multiplied or divided.
For equations involving a single variable, move all terms involving it to one side and 
try to isolate the variable
Consider solving an equation graphically. If you graph both sides of an equation, the 
points of intersection of the two graphs will be solutions to the equation.
If you are solving an equation involving fraction coefficients, consider multiplying 
both sides of the equation by the least common multiple of all the denominators.
For equations of the form (something)2 = a2, take the square root of both sides and 
be sure to consider both roots.
For degree two equations not of the form (something)2 = a2, move all terms to one 
side and use your tools for solving quadratic equations.
If an expression looks like it is easy to factor, factor it and see if that simplifies 
solving the problem. The Difference of Squares pattern is fairly common and is easy 
to work with.
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For equations of degree higher than one, put all the terms on one side and see if 
you can factor it.
For equations involving square roots (or nth roots), isolate the square root (nth root) 
to one side of the equation and square (nth power) both sides of the equation. Look 
out for introducing false solutions when you do this.
If you are adding or subtracting a fraction with a square root in the denominator, 
consider rationalizing the denominator of the fraction to make it easier to combine 
with the other fraction.

Intermediate Strategies 

● Look at simpler versions of the problem. Try lots of examples and look for patterns.
● Break the problem into pieces easier to tackle independently.
● See if an inductive process would help.
● Identify auxiliary items you can add to the problem that may make it easier to solve.
● Work the problem backwards and forwards and see if they meet in the middle.
● Play with the problem. Write down and identify partial solutions and preliminary 

ideas.
● If you have trouble proving that something is true, look for counterexamples. #### 

combine this with next two?
● Assume the result or your proposed answer is true. What must be true for that to 

happen?
● Consider proof by contradiction or contrapositive - assume the conclusion is false.
● Exploit symmetries in the problem.
● Look for extreme points in the problem that may force actions or relationships.
● Use Geometry strategies.
● Use Algebra II and Precalculus strategies.
● Use Calculus strategies.

When you are done with the problem:
● Check your answer and your solution steps.
● Can you think of a different way to solve this problem?
● Think of ways to generalize or specialize the original problem that would be 

interesting. The problems given in your homework do not need to be the end of your 
math explorations!

The following are detailed discussions of each of the problem strategies listed above.

Have you looked at simpler versions of the problem? Along the same lines, have you 
tried lots of examples and looked for patterns in the way the examples work out? 
Sometimes, just the process of working the examples illuminates what the process of the 
problem is and how to solve it.
Yes, this is repeated from the Basics section. This strategy has more basic versions and 
some sophisticated ones, and it is worth looking at all of them.

#### Also, simplify the problem. Should this be separate or part of this one?
#### finish writing
#### Consider a similar problem with fewer variables.
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Identify important variables, a variable to eliminate, keep 1 variable constant & 
observe changes
Recognize chunks and make substitutions

When dealing with geometric figures, look at special cases that have minimal complexity. 
For example, regular polygons; isosceles, right, or equilateral polygons; semi- or quarter 
circles instead of arbitrary sectors.
For geometric arguments, convenient values for computations can often be used WLOG 
(e.g. making the radius of a circle to be 1).

Have you tried breaking the problem into pieces that are easier to tackle independently?
There are two ways that this can be helpful in problems. One is to establish a string 
of subgoals that when traversed will give the full solution. The other is to break the 
problem into independent cases each of which can be attacked more easily than the 
original problem.

Example #### Write this
Creating cases: 
#### finish writing – give explicit examples

See if an inductive process would help. Some problems have a natural way of building 
from one step to the next. If so, this may be of use in solving the problem. If there is an 
infinite process involved, consider using mathematical induction. Some problems are 
easier to show using induction for the given formula than by creating the formula from 
scratch.

Example (Schoenfeld) You are given real numbers a, b, c, d, and e, each of which 
lies between 0 and 1. Prove that (1 - a)(1 - b)(1 - c)(1 - d)(1 - e) > 1 - a - b - c - d 
- e. The simplest way to do this problem is to first show that (1 - a)(1 - b) > 1 - a 
- b (which is fairly easy), then use that to show (1 - a)(1 - b)(1 - c) > 1 - a - b - c, 
and so on.

Example Show that every 2n by 2n checkerboard with an arbitrary square removed 
can be tiled using right triominoes. A right triomino is a tile consisting of three 
squares put together in an L shape. Attacking this problem directly is difficult 
due to all the different possibilities to address. Using induction, the problem is 
quite simple to solve.

Example Prove that the sum of the first n odd numbers is n2. If you ignore the 
elegant geometric proof of this, the most natural way to proceed is to use 
mathematical induction and the proof is quite straightforward. 

#### 2) If there is an integer parameter, look for an inductive argument. Either list 
out f(1), f(2), etc and look for patterns; also sometimes there is an easy way to see 
how f(n) leads to f(n+1) which leads to a nice inductive approach.
#### 1) If there is an integer parameter (n) in a problem, look at special cases n = 
1, 2, 3, … Look for patterns and observe the calculations for an inductive 
mechanism.

Are there any auxiliary items you can add to the problem that may make it easier to 
solve?
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The place this strategy most often comes up is in more difficult geometry problems. 
Adding an extra line segment, or even an extra portion of the diagram, can make 
the problem easier to solve; however, it can be tricky to see what those new items 
should be.
Example Prove that in triangle ABC, with congruent sides AB and AC, the angles at 

B and C are congruent. One way to prove this is to add the median from A to 
your diagram and use SSS on the two triangles just created.

Be willing to play with the problem and try things that may not look to pay off at first 
glance. Value your partial solutions and preliminary ideas. Also, write ideas down as they 
come to you so that you can look at them and be more fully aware of them.

Students may not realize the true importance of these. Upon further reflection on 
the problem, preliminary steps often become steppingstones to finishing a problem. 
After sleeping on the problem, an earlier partial solution may put you in a position to 
find your way to the end. Even if you do not finish the solution, someone may be 
able to take your partial solution and finish the problem – this also has the 
advantage that you can see what steps they used in that situation, and those steps 
may help you get unstuck in the future.
Play around with the problem and try different approaches even though you do not 
see any immediate use for the ideas. I am often surprised by students who stare at 
a problem without writing anything down for one, five, or even ten minutes, and then 
declare that they are giving up. Just as it is a big help to make a graph or a table, 
writing ideas down where you can see them and work with them provides most 
problem solvers with stronger leverage with those ideas than if they keep all those 
ideas in their head.
Example Find all the values of n that satisfy n2 = 11p + 4 where p is a prime. After 

playing with this and getting nowhere, you decide to try rewriting this as n2 – 4 = 
11p. As soon as you see this on the page, it occurs to you that the left side is a 
difference of squares, and so you rewrite this again as (n – 2) (n + 2) = 11p. At 
this point, the problem is easy and you quickly come to the solution n = 9.

Work the problem both backwards and forwards and see if it meets in the middle. #### 
Fill this in.

#### For proving X is a Y, generate subgoals by looking at results that guarantee 
that something is a Y. For example, if Y is a parallelogram, then you have potential 
subgoals that are: the diagonals of X bisect each other; opposite sides of X are 
congruent; opposite angles of X are congruent.

Be persistent. Also, be willing to put the problem aside for a while, even overnight, and 
return to it later.

Be sure to apply as many of these problem-solving techniques on your problem as 
seem to be useful. Also, give your brain a chance to work some magic behind the 
scenes. It is amazing, and extremely rewarding, to put a problem down for a while 
and pick it up later and suddenly think of the solution that was eluding you.
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If you are working on the right types of problems, you will not be able to solve every 
problem and that is okay. Embrace the challenge, have fun with it, and learn things 
from your successes and your unsuccesses (as Polya put it).

If you are having trouble proving that something is true, have you tried looking for 
counterexamples?

The search for counterexamples can be very instructive. Of course, if you find a 
counterexample, your work is done, and you can use your counterexample to show 
that the original problem is false. If you seem unable to find a counterexample, the 
problem requirements that keep your examples from being counterexamples may 
give you strong leads as to why the original problem is true, and that may be exactly 
what you need.
Example You are asked to prove or disprove that if you add 1 to the product of the 

first n prime numbers the result is always a prime. You try the first few cases 
and see that it seems to be true. You analyze the situation and see that of 
course none of the prime numbers involved in the product can divide the result, 
but you become suspicious that there is no reason some larger prime might not 
be a factor. Also, you remember that nobody has ever come up with a formula 
that always produces primes. So, you try more examples, and eventually find 
the counterexample 2 * 3 * 5 * 7 * 11 * 13 + 1 = 59 * 509.

Example If you remove the two opposite white corners of a chessboard, prove that it 
is impossible to exactly cover the resulting board with 2x1 dominoes. At first you 
think this must be wrong. You see that you have 62 squares to cover with a 
simple piece that has two squares in it, and you think this should be easy. As 
you try examples involving small boards, say 4x4 or 6x6, you quickly realize 
that you always end up with two extra black squares no matter what you do. 
You also notice that each time you place a domino you reduce the number of 
uncovered white squares by one and the number of uncovered black squares 
by one. These realizations lead to the proof of why it is impossible!

Assume the result or your proposed answer is true. What must be true for that to 
happen? There are three situations covered here. In geometry construction problems, you 
may be asked to construct a point, line, or figure - go ahead and draw the figure as part of 
your diagram and see what that suggests to you. If you are asked to prove that something 
is true, assume it is true and see what other statements would naturally follow or depend 
on that. Finally, you may be asked to find a result and you may have a possible solution - 
by assuming it is correct, you may see things that naturally follow from it or depend on it.
If you create a world in which your result is true, you will often realize that there are other 
aspects of the problem space that must occur. These aspects can provide you with 
intermediate goals or with insights as to how the problem pieces must fit together.

#### Put in one or more examples.
#### For geometry construction problems, draw the figure and see what properties 
it must have.
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Look at proof by contradiction or contrapositive - assume the conclusion of the problem 
is false. This can lead to at least two directions of attack. For some problems, the 
contrapositive of the original problem is easier to understand and attack. For other 
problems, you may decide that proof by contradiction is the easiest way to get a handle on 
the problem. The distinction between these two approaches may be so subtle as to be 
unimportant for some problems.

Example Prove that if n is composite, then n must have a prime factor less than or 
equal to its square root. The contrapositive of this is that if all of the primes 
factors of a number are greater than its square root, then the number must be a 
prime. This contrapositive may seem easier to prove.

Example Prove that for any 22 days, at least four of them fall on the same day of the 
week. Suppose the conclusion is false. That would mean that there are at most 
three days for each day of the week. Consequently, there could be at most 7*3 
= 21 days involved. This contradicts the statement that there are 22 days.

Example Prove there are an infinite number of primes. Assume this is false. That 
would mean that there is a finite list of primes. You might quickly become 
suspicious that you can create a large number that would not be divisible by 
any of the primes on your list. At this point the end is in sight and it’s just a 
matter of playing around.

#### When proving uniqueness, proof by contradiction is often helpful.

Exploit symmetries in the problem. #### finish writing this.

Look for extreme points in the problem that may force actions or relationships. Problems 
sometime have extreme values or locations that force other things to be true or to interact.

Example Suppose that the friendship relationship is reciprocal. Prove that in a group 
of n friends there must always be at least two people with the same number of 
friends in the group. If there were no duplication, then the n people would have 
to have distinct numbers of friends with values from 0 to n-1. The two extremes 
of 0 and n-1 are important – it is not possible for both to happen, and the 
problem solution follows

#### Consider extreme cases and special cases
Calculating (or approximating) values over a range of cases may suggest the nature 
of an extremum which, once “determined,” may be justified in any variety of ways. 
Special cases of symmetric objects are often prime candidates for examination.

Use Geometry strategies. Here is a list of strategies to use when dealing with Geometry 
problems.

#### Finish writing this

Use Algebra II and Precalculus strategies. Here is a list of strategies to use when 
dealing with Algebra II and Precalculus problems.

#### Finish writing this
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Use AP Calculus strategies. Here is a list of strategies to use when dealing with AP 
Calculus problems.

#### Finish writing this

You are done with the problem, now what? There are important ideas to consider once a 
problem solver has finished a problem. These ideas are often ignored by the student due 
to time pressure or the feeling that the job is done, and it is time to move on to the next 
thing. 

Have you checked your answer and your solution steps? While it is always a good idea 
to look back over your steps, if there is a mistake in those steps it is often easy to have the 
same thought processes while reviewing the steps and thereby repeat the mistake and not 
catch it. One way to avoid this is to find alternate ways to do things. Here are some other 
ways of finding errors in your work.

a. Remember to use the steps from the Basic Strategies section.
b. Might the original problem have more solutions than just the ones you thought of?
c. If your problem produces a general result, try applying that result to specific 
cases and seeing if it produces correct conclusions.
Example If you have a general result about trapezoids, you should be able to set the 

length of one of the two parallel sides of the trapezoid to 0 and get a true 
statement about triangles.

d. Does your result work if you move it to a more general setting?
Example Finding the length of a diagonal of a rectangle involves using the 

Pythagorean theorem with a right triangle. That same idea will probably work 
and produce a similar formula when finding the length of the diagonal of a 
three-dimensional box.

Can you think of a different way to solve this problem?
Having a solution in hand often provides the confidence and new insights to see the 
problem in a new light and find different and sometimes cleaner, more satisfying 
solutions to the problem.
Example (Polya) A frustrum is a cone whose top has been sliced off parallel to the 

base. Asked for the lateral surface area of a frustrum of a right circular cone 
with lower radius R, upper radius r, and height h, you get 

 Looking at , you realize this is 
, which is the circumference of the midsection of the frustrum. 

Looking at , you realize this is the slant height of the frustrum. 
Using these two insights, your formula becomes the circumference of the 
midsection times the slant height. This is a much cleaner and more intuitive 
formula.
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π(R + r) (R − r)2 + h2 . π(R + r)
(2πR + 2πr)/2

(R − r)2 + h2



Can you think of ways of generalizing or specializing the original problem that would be 
interesting to investigate? The problems given in your homework do not need to be the 
end of your math explorations!

As was discussed earlier in the problem-solving strategies, sometimes this 
produces a problem that is easier to solve. This is also how new mathematics gets 
created – the mathematician sees a result, wonders if it can be applied more widely, 
and then starts exploring for interesting new results.
Example You might be asked to show that the sum of the squares of two integers is 

always of the form 4k, 4k + 1, or 4k + 2. This may lead you to wonder about 
which numbers can be expressed as the sum of two squares. This new 
question is a rich playground with interesting results to look into, such as: Which 
primes are expressible as the sum of two squares? Why is it that if you take two 
numbers which are a sum of two squares then their product is also a sum of two 
squares?

Example You are asked to find the product of the divisors of a number. In doing this 
you discover that the formula depends on there being an odd number of 
divisors for numbers that are squares. This naturally leads to an investigation of 
why some numbers have an even number of divisors and others an odd 
number.
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Advanced Strategies 

● Look at simpler versions of the problem. Try lots of examples and look for patterns.
● Use parity e.g. (positive/negative, even/odd) to simplify the analysis
● For repeated actions, look for an invariant function that does not change
● Look for symmetry in the problem
● Use the pigeonhole principle (aka Dirichlet’s box principle)
● Number Theory strategies
● Inequality strategies – squares are nonnegative, AM-GM inequality, Cauchy-

Schwartz, Chebyshev
● Combinatorics strategies – see p. 87 of Engel’s book
● Look for a maximal or extremal element or state
● Coloring proofs – partitioning a set into disjoint sets
● For processes built on earlier results, look at weak or strong induction

The following are detailed discussions of each of the problem strategies listed above.

Have you looked at simpler versions of the problem? Along the same lines, have you 
tried lots of examples and looked for patterns in the way the examples work out? 
Sometimes, just the process of working the examples illuminates what the process of the 
problem is and how to solve it.
Yes, this is repeated from the Basics section. This strategy has more basic versions and 
some sophisticated ones, and it is worth looking at all of them.
####
If there are a large number of variables in a problem, all of which play the same role, look 
at the analogous 1- or 2-variable problem. You may be able to build up a solution from 
there.
####
When dealing with problems that concern the roots of polynomials, it may be of use to look 
at easily factorable polynomials.
When dealing with problems that concern sequences or series that are constructed 
recursively, it may be of use to try initial values of 0 and 1 - if such choices don’t destroy 
the generality of the processes under investigation.
#### 2) For questions about roots of complex algebraic expressions, choose special cases 
where the roots or easy to keep track of (e.g. easily factored polynomials).
3) In iterated computations or recursions, choose easy starting points such as 0 and 1.

#### Number Theory strategy
#### For divisibility problems – consider using unique factorization
#### For divisibility problems or remainder problems – consider using modular arithmetic
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Chapter 3 - Self-Monitoring 

At any given moment as a person is solving a problem there are choices to be made about 
what to do and how long to do it. Some typical choices are: should I continue what I am 
doing, should I abandon this approach permanently or temporarily, should I switch to 
another approach, and should I do more analysis and discover another approach? The 
effectiveness of this self-monitoring and choice making can be the difference between 
success and failure.

In Schoenfeld’s studies, roughly sixty percent of test subjects (upper high school or early 
college students working in pairs) in a 20-minute solution attempt read the problem, made 
a decision quickly as to what to do, and then pursued that solution approach no matter 
what happened for the remainder of the time. That first decision, never reconsidered, 
generally guaranteed failure for those test subjects. Good problem solving requires 
frequent self-monitoring and assessing of where things stand and what should be done 
next. It is essential that students develop the habit of brief periodic mental check-ins, on 
the order of once a minute.

The habits of self-monitoring and assessing are difficult to codify, but the following are 
some thoughts.

#### Play with the problem and be persistent. This is as much a belief as it is self-
monitoring, but I think I like it here better. Be persistent and be willing to put the problem 
aside for a while and return to it later.

If you find yourself becoming overly frustrated or perhaps too tired to press on, take some 
time off to regroup. When you come back to your problem, review what you have done so 
far. In particular, look carefully to see whether you might have overlooked or 
misunderstood parts of the problem description. Also, just having some time away from the 
problem can be useful for letting a different part of your brain work in the background.

Some questions one might ask are: 
Should I pursue this line of thought further, or should I back off (put it aside by not 
throw it away) and consider another alternative?
Should I take this opportunity to create a list of possible next steps by applying 
some problem-solving strategies that appear to apply to this situation?
How do I rank the possible next steps I have generated? Generally speaking, 
quicker steps would rank higher because they can be dispensed with quickly. 
Complex calculations should generally be avoided unless no simpler options are 
available. However; a particularly promising long calculation might be preferred if 
confidence in it is high.

One research hypothesis put forward is that a person’s internal dialog of self-monitoring for 
problem solving is developed during cooperative problem solving with a group. The 
frequent questioning and challenging of group members with each other for what is being 
done and considering what should be done next becomes a model for what the individual 



will do internally. To the extent that this hypothesis is correct, this points to a particular 
potent value of doing group work.

Schoenfeld describes how a teacher can promote the practice of self-monitoring. The point 
is to make the asking of these questions by the teacher habitual for the students for 
themselves. After giving the class a problem to work on, the teacher moves from group to 
group and is only allowed to ask one of three questions: 
1) “What (exactly) are you doing? (Can you describe it precisely?) 
2) Why are you doing what you are doing? (How does it fit into your vision of the solution?)  
3) How does it help you? (What will you do with the outcome when you obtain it?)



Chapter 4 - Beliefs and AKtudes 

A student’s beliefs and attitudes shape and are shaped by the student’s interactions with 
mathematical tasks. What follows is far from an exhaustive list of examples of how beliefs 
may influence how a person goes about approaching mathematics. While most of these 
beliefs are given in a negative version, many can be reversed to produce a positive 
version.

Over the last three decades, Carol Dweck’s work on growth mindset has been a significant 
example of how a person’s mindset can affect their performance. I will assume the reader 
is familiar with this work and not belabor what has been repeated quite often.

Overall math success and culture:
(Parent speaking) It’s okay to not be good at math. I was never very good at it 
either.
People who are good at math are nerdy and social misfits.
Mathematics work is a lonely activity, performed by a single individual.
Women good at math will be viewed as lacking femininity and not fit in socially.
(Fixed Mindset) You are either born with math talent or you are not.
I am good (bad) at math, so my ideas are generally useful (useless).
Weak students attribute their math successes to luck and their failures to lack of 
ability.
Strong students attribute their successes to their abilities.
The better the student is, the less likely he or she is to believe that mathematics is 
mostly memorizing, that success depends on memorization, or that problems get 
worked from the top down in step-by-step procedures.
Those that see themselves as being good at mathematics also find it interesting.
Better students perceive themselves as working harder in mathematics than most.
US Parents believe that reading, not mathematics, needs more emphasis in the 
curriculum.
In the US (more so than in Japan), people are much more likely to believe that 
innate ability (as opposed to effort) underlies children’s success in mathematics

The relevance of math work:
I will never use this mathematics in my real life.
Formal mathematics has little to do with real thinking.

Problem solving:
I believe that my efforts do (don’t) have the potential of being successful.
Only geniuses are capable of discovering or creating mathematics.

Consequence: If you forget something, do not try to recreate it. Accept 
procedures at face value and do not try to understand why they work.

If I cannot solve a problem in 2 minutes (or 5 minutes), it must require an expert.
Consequence: Give up if a problem takes too long. Do not value or enjoy the 
process of problem solving.



(Teaching issue) Math is performing exercises. Most math tasks, especially test 
problems, are designed to be done in a few minutes.

Consequence: Students have little experience doing complicated problems 
over periods of time. Consequently, they have no expectation that progress 
can be made in that circumstance.

Immediately after reading a problem statement, I should understand what is asked.
Each step must be accurate without trial and error experiments.
Attaining the solution is the most important aspect of problem solving activity.
Problem solving is a linear process.
Hypotheses are tested as they come up. They are not ranked for likely 
effectiveness.

Naïve empiricism:
A proposition is true if it sounds true or rings true.

Consequence: There is no need to criticize or revise - intuitive feel suffices.
Proofs and deductive reasoning are needed when you already know or are told the 
answer and you need to prove it is correct. 

Consequence: One does not need deductive reasoning to find an answer.
When I do a proof, I can only verify something a mathematician has shown to be 
true.
Formal mathematics has little to do with real thinking.

Consequence: In a problem that calls for discovery, formal mathematics is 
not used.

You have to memorize the way to do geometric constructions.
Consequence: Mathematical deduction is not a tool of invention.

Geometric insight comes from very accurate drawings.
Verification of steps is purely empirical. Constructions are verified by doing them.

Passive versus Active:
The math that I learn in school is mostly facts and procedures that have to be 
memorized.
It’s okay to use mathematics that you do not understand as long as you know how 
to use it.
Mathematical theorems and practices are handed down by mathematicians and 
cannot be derived by students.
Learning mathematics is mostly memorizing.
Doing mathematics requires lots of practice in following rules.
There is always a rule to follow in solving mathematics problems
Doing mathematics means following the rules laid down by the teacher, knowing 
mathematics means remembering and applying the correct rule when the teacher 
asks a question, and mathematical truth is determined when the answer is ratified 
by the teacher.
Mathematics problems have one and only one right answer.
There is only one correct way to solve any mathematics problem - usually the rule 
the teacher has most recently demonstrated to the class.



Ordinary students cannot expect to understand mathematics; they expect simply to 
memorize it and apply what they have learned mechanically and without 
understanding.
Mathematics is only calculation, algorithm, and rule memorization.

Meaning versus Form:
A geometry proof must be written in an exact form that the teacher asks for.
“Being mathematical” means expressing oneself via the prescribed forms.


