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1.4. PLACE VALUES INCREASE BY FACTORS OF 10

1.4 Place values increase by factors of 10

Learn that the value of each place increases by a factor of 10.

This is a key step in understanding and working with multi-digit
numbers, so make sure it is very well understood before moving on.

Place value increases by 10 Place value refers to the value assigned
to each place in a number. In the number 237, the 7 is in the 1’s
place, the 3 is in the 10’s place, and the 2 is in the 100’s place.
The value of each place, first 1, then 10, then 100, increases by a
factor of 10 as you move to the left in the number.

The term factor is used frequently throughout this book.

A number “increased by a factor of 10”
has been multiplied by 10. A number
has a factor of 5 if 5 evenly divides the
number.

Where does the 10 come from? You would be amazed how few chil-
dren in 7th grade know that we use a factor of 10 for place value
because we have 10 fingers.

To explain the need for bundling, talk with your child about
how a tradesman or shepherd ten thousand years ago would
keep a record counting a collection of things.
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CHAPTER 1. COUNTING AND PLACE VALUE

A person making records a long time ago would put one tally
mark down to record each item. However, it was not much
easier to see how many things there were looking at the marks
than it was looking at the original items. The answer was to
start bundling.

?

> >I I I

Bundling To simplify things, people used a strategy of bundling.
They would count things on their fingers, and each time they
ran out of fingers they would mark that down as a bundle.
When they were done, they would also mark down how many
things were not in a bundle. For example, if they had 23 sheep,
they would end up with 2 bundle-marks for the bundles of ten,
and 3 marks for the sheep left over.

?

> >I I I

Practice this with your child with something you have lots of
that you can make bundles with. Popsicle sticks, toothpicks, and
Legos are examples of such things that can be rubber-banded or
stuck together in bundles.

10



1.4. PLACE VALUES INCREASE BY FACTORS OF 10

Put an assortment of the counting items on a table, and have
your child make as many bundles of 10 as possible and write
down the corresponding number. Sometimes, rather than using
standard written numbers, have fun creating special marks to
use for bundles and left-over individual items.

Bigger bundles This idea of bundling was used with even bigger
numbers. For a number in the hundreds, there would be lots and
lots of bundles of 10. Rather than having all of those bundles to
keep track of, each time there were 10 bundles of 10, this would
be made into a 100-super-bundle.
For even larger numbers, if there were lots of 100-super-bundles,
these 100-super-bundles would be bundled in groups of 10 form-
ing 1000-super-bundles. Make sure your child understands that
the factor of 10 comes from the maximum number of things you
can count on your fingers.
Practice bundling with your child by creating in advance a num-
ber of bundles of 10. Then, give your child a collection of bundles
of 10 and of loose items, and have your child make bundles and
super-bundles and write down the number. Keep emphasizing
that each bigger size of bundle is made out of 10 of the smaller
size items or bundles.

Written numbers When practicing bundling with your child, talk
about the digits in the numbers that are produced. Do some ex-
amples where the numbers are repeated. For example, produce

11



CHAPTER 1. COUNTING AND PLACE VALUE

the answer 225. Talk about how the 2 in the hundreds place is
worth 10 times as much as the 2 in the tens place. Explain that
this is because each bundle of 100 is 10 groups of bundles of 10.
Talk with your child about how each place in a number is named
after the bundle size it is counting. Take any number, such as
287. Talk about how the 7 is counting 1’s, the 8 is counting
bundles of 10, and the 2 is counting bundles of 100.
If you want, compare our system of using place value to some
other systems described in Chapter 9: Ancient Number Systems.
For example, talk about how the Romans used different symbols
to indicate different bundle sizes—X to indicate a bundle of 10,
and C to indicate a bundle of 100. Rather than creating different
symbols for each different bundle size, we use place value and
use different positions in the written number.

Practice regrouping After much practice with bundles, do the fol-
lowing practice trading off values in different number places.
Write down labeled columns for the 1’s, 10’s, and 100’s columns
as shown below. Add in higher value columns once your child
gets comfortable with the smaller values. Next, pick some num-
ber to practice with, such as 364 shown below.

100′s 10′s 1′s
3 6 4

2 + 1
↘

6 4
2 10 + 6 4
2 16 4
2 14 + 2

↘
4

2 14 20 + 4
2 14 24
2 14

↙
10 + 14

2 14 + 1 14
2 15 14

Show how you can trade 1 in one column for 10 in the column to
its right. Also, go the other way, by showing how 10 in a column
can be traded for a 1 in the column to its left. Emphasize that
the total value of the number is never changing, that only the
representation for it is different.

12



1.4. PLACE VALUES INCREASE BY FACTORS OF 10

Seeing a group of things two ways The tricky part of this step for a
child is being able to look at 10 individual things two ways. The
10 things need to be seen as both 10 separate things, and as one
group of 10. This sounds easy to us, but it is a big developmental
step that your child may take a while to be ready for. If your
child has a lot of trouble with this now, do some other area of
math for a while and try this again in a few months.

Compare with other bases It is very helpful to compare our use of
base 10 with other number bases. The subject of other number
bases is covered in Chapter 8: Number Bases—Animal Math and
in Chapter 9: Ancient Number Systems. Seeing numbers rep-
resented in other bases makes the factor of 10 we use have a
meaning, and makes it less taken for granted.

The material in Section 3.1: Powers of 10 should be done with, or
just after, this section.

The bundling practice for this step is very similar to what you will
be teaching your child about expanded numbers in the next section.
The difference between the two is a difference in emphasis. In this
section you are emphasizing the size of the bundles, and how that
size increases by factors of 10. In Section 1.5: Expanded number format
you will take the bundle sizes for granted, and the practice will be in
breaking up the numbers into those size bundles.

13



CHAPTER 2. ADDING AND SUBTRACTING

2.10 Subtracting with regrouping

Learning to subtract when regrouping is involved.

Bundles The same techniques you used for introducing subtrac-
tion without regrouping in Section 2.5: Add & subtract without
regrouping will be useful here.

Start by going through some problems with bundles of popsicle
sticks or Legos, showing how a bundle of 10 sticks can be split
apart and used as 10 single sticks when needed.

Here is 63 being regrouped as 50 + 13.

à

Expanded numbers Start writing out problems using numbers writ-
ten out in expanded number format.

63
− 25 à

60 + 3
− 20 + 5 à

50 + 13
− 20 + 5

30 + 8

Marking regrouping There is one main method used to mark re-
grouping for subtraction, so you will not have multiple methods
to choose from, the way there was for addition. You may enjoy
playing with some of the unusual methods used for regrouping
collected together in Section 2.12: Unusual subtraction regrouping
methods.
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2.10. SUBTRACTING WITH REGROUPING

To mark changes for a regrouping, put a single line through
any number being reduced and write its new value above it.
This cross-out mark should be done lightly enough that the
original number is still easy to read. For any group of ten being
regrouped, put a smaller 1 on the left of, and slightly above, the
digit that is to receive the regrouping. For example:

63
− 25 à

5
/613

− 2 5

Method to avoid larger subtractions This is a way to do subtractions
so that your child never needs to subtract from a number larger
than 10. I am not an advocate of this method, since it makes
regrouping a bit more complex. However, if you or your child
prefer this method, feel free to use it.

Look again at the 63 − 25 example. After regrouping the 1,
immediately subtract 5 from the regrouped 10 ones, and add
that result to the 3. That is, calculate

(10 − 5) + 3 = 5 + 3 = 8

rather than
(10 + 3) − 5 = 13 − 5 = 8

By subtracting from the regrouped 10 first, before it has been
combined with the number that needed it (3 in this case), you
never have to subtract from numbers larger than 10.

In the first book, I described doing problems such as 13 − 5 by
adding two differences

(13 − 10) + (10 − 5)

Using the two differences is equivalent to the method given
above for subtracting from regroupings. The reason I do not
like this method for regrouping is that I feel your child will have
internalized how to do 13 − 5 before reaching this step, and I
prefer to keep the steps for regrouping as simple as possible.
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CHAPTER 2. ADDING AND SUBTRACTING

2.11 Subtraction regrouping—step progression

The problem progression to teach regrouping for subtraction.

Practice regrouping for subtraction by following these steps. As
with addition, each of these steps may take anywhere from a few
minutes to a few weeks. Be flexible and patient, and remember that
there is no schedule for this.

Whenever regrouping, be sure to emphasize place value. It is very
important that the process of regrouping 1 from one column to pro-
duce 10 in the next column is understood, and is not just mechanical.

Step 1: Two-digit numbers Start with simple problems that involve
two-digit numbers, where the regrouping is needed in the ones
column. Give some problems with a 0 in the ones digit in the
top number, and see whether that is handled smoothly or not.

54
− 39

92
− 46

80
− 27

Step 2: Single regrouping in other columns Continue to have a sin-
gle regrouping, but now increase the size of the numbers and
vary the column where the regrouping occurs. Mix in exam-
ples where the bottom number has fewer columns than the top
number.

258
− 174

592
− 46

853
− 393

Step 3: Two separate regroupings Use 4-digit subtraction problems
with regroupings that occur in the first and third columns. Since
the regroupings are in separated columns, there should be noth-
ing tricky about this, but it is good to practice and check.

6,754
− 2,839

3,092
− 446
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2.11. SUBTRACTION REGROUPING—STEP PROGRESSION

Step 4: Two regroupings together The problems for this step have
regrouping in two neighboring columns. Use three- or four-
digit numbers for these problems.

1,254
− 839

2,892
− 1,396

The regrouping marks can get a little messy, so an example done
in stages is given below:

526
− 249 à

5
1
/216

− 2 4 9
7

à

4
/5

11
/216

− 2 4 9
2 2 7

Step 5: Regroup from a 1 in left column These problems involve re-
grouping from a 1 in the left-most column. Check that your child
is comfortable crossing out the 1 and putting a 0 there, and then
having a blank (or 0) in that column in the result. If it’s fun
putting a 0 in the left-most column of the result, let your child
have fun.

14
− 9

124
− 46

1,633
− 807

Step 6: Single regrouping from 0 Give problems involving a single
regrouping next to a 0.

702
− 195

2,902
− 1,486

This is tricky the first couple of times, because the regrouping
from the 0 first requires a regrouping from the digit to the left of
the 0.
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CHAPTER 2. ADDING AND SUBTRACTING

An example done in stages is shown below:

504
− 359 à

4
/510 4

− 3 5 9 à

4
/5 /1

9
/014

− 3 5 9
1 4 5

In this last example, it is important to regroup 1 from the 5 first.
If the 0 is crossed out and replaced by a 9 first, a child can get
distracted and forget to do the other half of the regrouping. By
crossing out the 5 first, there will be no problem picking up
where your child left off.

Step 7: Regrouping across several 0’s Extend the exercises from step
6 by giving problems that involve a single regrouping next to
two or more consecutive 0’s.

5,004
− 3,259

90,002
− 40,236

As in step 6, the regrouping will ripple to the left until you reach
the first non-zero number to regroup from. As before, it is very
important to start marking the regrouping next to the left-most
0 and work back to the right. For example:

7,002
− 1,357 à

6
/710 0 2

− 1 3 5 7 à

6
/7 /1

9
/010 2

− 1 3 5 7 à

6
/7 /1

9
/0 /1

9
/012

− 1 3 5 7
5 6 4 5

Step 8: Mix together all types Finally, mix up all of the preceding
types. Emphasize any particular types that your child is having
trouble with.
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CHAPTER9
Ancient Number Systems

This chapter is entirely for fun. This material ties into the ideas of
place value and number bases. It also gives an historical perspective
on the development of number systems from ancient times. Learning
the Roman numerals is the only traditional portion of this chapter,
and the rest can be skipped if there is no interest in it.

Tally marks to symbols When people first started recording quanti-
ties, they did so using a series of marks on a rock or a piece of
wood. The person would put down one mark for each item to
be counted. This works well until there are 20 or more marks,
at which point it becomes difficult to size up the number from
looking at a series of ungrouped marks.

The oldest artifacts of this type are around 30,000 years old. In-
terestingly, this is also about the time that cave art seems to have
started. At about the time writing systems started developing
5,000 years ago, more sophisticated ways of recording quantities
started to be used.
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CHAPTER 9. ANCIENT NUMBER SYSTEMS

An early improvement was to put the marks in groups. People
still do this today when counting things and recording them as
they go. A person will put down a series of marks, until it is
time for the fifth mark. At that point, a cross mark is made to
indicate the fifth item, and to make it easier to see the group of
five. Since five things are what a person can count on one hand,
groups of five are natural for us.

Some of the systems borrowed number ideas from societies they
traded with, and some invented their systems entirely on their
own. Given all of the progress that occurred in so many areas
over the last 5,000 years, it is remarkable how slowly reckoning
skills developed.

Historical key steps There is a small set of key turning points in the
development of number systems.

1. Make symbols To avoid have a long list of marks or 1’s,
systems created special symbols for some of the quantities.
This is the starting point for all of the number systems.

2. Add, subtract, multiply In order to avoid making a huge
number of symbols, they had ways to combine the sym-
bols. This often involved being able to add two or more
symbols together. For example, the Romans formed 11 by
putting the symbol for 10 together with the symbol for 1.
Some versions of the Roman system also used subtraction
to form numerals. If the symbol for 1 was placed before
the symbol for 10, then the value was 10 − 1 = 9.
The Chinese used multiplication to combine the symbols
for 1 through 9, with their symbols for powers of 10. For
example, 80 was formed by putting the symbol for 8 before
the symbol for 10. The Roman and Greek systems multi-
plied the value of a group of symbols by 1,000 by putting
a mark before them or over them.
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3. Symbols for powers of the base Special symbols were cre-
ated for values that were powers of the base. For example,
the only symbols that the Egyptians had in the hieroglyphic
system were for the numbers 1, 10, 100, and so on. The
Egyptians formed all other numbers by adding these val-
ues together.

4. Place value This was a major advance in number represen-
tations, as it made doing arithmetic far simpler. It also
greatly reduced the need for special symbols.
The only systems to incorporate the ideas of place value
were the Babylonian, Mayan, Chinese counting board, and
Hindu-Arabic. The Babylonians used base 60, the Mayans
used base 20, and the other two used base 10.

5. Use 0 with place value The earliest place value systems used
a gap or dot to indicate when a place had nothing in it. It
was a significant development that the Hindu-Arabic and
Mayan systems used 0’s in their place value systems.

Ways to practice This chapter covers all of the major number systems
developed in the ancient world. Most of these systems incorpo-
rate ideas about number bases. The first few sections of Chapter
8: Number Bases—Animal Math are good preparation for this. It
works well to do those sections slightly before or at the same
time as the examples in this chapter.

One way to play with these ideas is to pretend to be people in
the different societies, and send each other messages using your
numbers that the other person has to translate. You can also
have fun writing secret “coded” messages to each other using
numbers written in these various systems.

Go through the historical context of these various systems. Con-
sider what was available before each system was created, what
it was like to use the system, and look at the systems that came
after them. Examples of such topics are: “Why was using nu-
merals an improvement over using tally marks?”, “What was
natural about using base 5, 10, 20, and 60?”, “How bulky and
hard to read are Egyptian numbers compared to Chinese?”,
“How hard would it have been to learn the multiplication table
using the Greek system?”, “Why was using place value a nat-
ural follow on to using counting boards?”, and “Why was it so
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CHAPTER 9. ANCIENT NUMBER SYSTEMS

hard for Europeans to give up the Roman numeral system in the
Middle Ages?”

To get a better sense of the advantages and disadvantages of
these systems, have your child do multi-digit addition, subtrac-
tion, and multiplication using them. Choose a few arithmetic
problems, have your child do those problems using all of the
systems, and discuss the differences.

More history If your child finds historical ideas interesting, there
are a number of mathematical topics to look into to see how
various societies dealt with them. For example, there were some
interesting methods used for fractions in these early societies.
The Egyptians used only fractions of the form 1

n , except for the
fraction 2

3 . The history of early geometry involves the Greeks,
but also important developments in other societies, and your
child may enjoy looking at how that got started. Some other
important concepts that ancient societies struggled with were
negative numbers and irrational numbers (such as

√
2 and π).
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9.1. EGYPTIAN

9.1 Egyptian

Learning the ancient Egyptian number system.

The unified Egyptian civilization started around 3000 BC, and had
a hieroglyphic form of writing at that time. As might be expected of a
civilization that lasted thousands of years, their writing system, and
their representation of numbers in particular, changed over time. The
hieroglyphic form transitioned significantly to the hieratic form. The
hieratic form later transitioned less dramatically to the demotic form.

All of these forms of writing numerals used a base 10 system for
representing whole numbers greater than 0. They did not have a way
to represent 0.

Hieroglyphs The Egyptians had hieroglyphs for each of the powers
of 10, up to 106.

In order, these hieroglyphs are pictures of: single stroke, heel
bone, coil of rope, water lily or lotus, finger, tadpole or frog, and
man with both hands raised.

They formed numbers from these symbols by adding them to-
gether, using each symbol as many times as was needed. For
example, to write the numbers 1,306 and 1,358,031 they wrote:
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CHAPTER 9. ANCIENT NUMBER SYSTEMS

Hieratic The Egyptians used this system of writing after the invention
of writing on papyrus. Initially the hieratic symbols looked
very similar to the corresponding hieroglyphs, but over time
the hieratic symbols diverged. Hieroglyphs continued to be
used for symbols carved into stone.

Hieratic symbols use a simpler, more compact representation
for numbers. However, there are a lot more symbols to learn.

This system uses a single symbol for each of the numbers 1, 2,
. . . , 9, 10, 20, . . . 90, 100, 200, and so on. The symbols changed
over the many hundreds of years they were used. Here is a
sample from around 1600 BC.

Writing 79 in hieratics requires just two symbols—a 70 and a 9.
Hieroglyphs use 16 symbols—seven 10’s and nine 1’s.

The Greeks used a system of writing numbers very similar to the
hieratic and demotic systems used by the Egyptians.

206


